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Studies directed at the synthesis of polycitone and storniamide natural products via vinylogous iminium
salts and microwave accelerated Vilsmeier–Haack formylations are described. The successful strategy
relies on the formation of a 2,4-disubstituted pyrrole or a 2,3,4-trisubstituted pyrrole from a vinamidi-
nium salt or vinamidinium salt derivative followed by formylation at the 5-position of the pyrrole.
Subsequent transformations of the selectively formylated pyrroles lead to efficient and regiocontrolled
relay syntheses of the respective pyrrole containing natural products.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Pyrrole containing marine natural products and their derivatives
continue to be a source of compounds with very interesting bio-
logical properties.1 A number of recent reviews2 have appeared,
which describe synthetic efforts as well as structure–activity re-
lationships and mode of action studies for this large and diverse
class of substances.

Our own interest in this area of chemistry has allowed us to
develop relay and total syntheses of certain members of this class of
alkaloids (Fig. 1) such as rigidin,3 rigidin E,3 polycitones A and B,4

ningalin B,5 and lukianol A.6 Edstrom7 and Sakamoto8 have suc-
cessfully synthesized rigidin, while Steglich has synthesized poly-
citones A and B,9 ningalin10 type natural products, and various other
members of this class of substances. Boger has also made a major
synthetic effort in this area and has completed syntheses of ninga-
lins A and B, lukianol A, and permethylstorniamide A.11 The research
groups of Banwell,12 Furstner,13 Handy,14 Bullington,15 Iwao,16 Ishi-
bashi,17 and Ruchirawat18 have also made major contributions to this
area of chemistry. The majority of the synthetic methods to date rely
: þ1 804 287 1897.
n).
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on the efficient and regiocontrolled preparation of 2-carboalkoxy-
3,4-diarylpyrroles (11) or 2,5-dicarboalkoxy-3,4-diarylpyrroles (12)
as key synthetic intermediates (Fig. 2), which are further elaborated
to the desired natural products. Interestingly, the conversion of the
2-carboalkoxy-3,4-diarylpyrroles (11) to the 2,5-dicarboalkoxy-3,4-
diarylpyrroles (12) has not been utilized presumably due to the
surprising lack of reactivity of these 2,3,4-trisubstituted pyrroles
(11) at the 5-position with carbon bearing electrophiles. Such
a transformation becomes quite significant for the preparation of the
2,3,4,5-tetrasubstituted pyrrole core, which is found in the majority
of the natural products that have been previously mentioned. Con-
sequently, any new synthetic methods or strategies, which provide
the efficient and regiocontrolled preparation of these two scaffolds
(11 and 12), are of importance.

2. Results and discussions

Our research efforts have demonstrated the ability to efficiently
prepare 4-aryl-2-carbethoxypyrroles,19 5-aryl-2-carbethoxy-
pyrroles,20 3-aryl-2-carbethoxypyrroles,21 and 3,4-diaryl-2-carb-
ethoxypyrroles22 from vinylogous iminium salts (14 and 18) and
their derivatives (19) with regiochemical control. Our general
strategy for the synthesis of 4-aryl-2-carbethoxypyrroles (15) and
3,4-diaryl-2-carbethoxypyrroles (20) is described in Scheme 1.
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As mentioned previously, the ability to introduce carbon bearing
electrophiles at the 5-position (ortho to nitrogen) of highly
substituted pyrroles is quite significant. The Vilsmeier–Haack re-
agent23 has traditionally been a useful means to introduce a formyl
group at this position but, at least in the substrates that we have
examined (such as 21a–21k, Table 1), traditional heating of the
pyrrole with DMF and phosphorous oxychloride does not provide
a clean and high yielding method (typically in the 30% range) for
the preparation of the desired formylpyrroles. We have had some
success in the past in applying microwave acceleration conditions
to reactions that appeared sluggish for either electronic or steric
reasons. Consequently, we decided to subject some of our repre-
sentative pyrroles to a microwave accelerated version of the Vils-
meier–Haack reaction and the results are presented in Table 1. To
date the only example of microwave acceleration in the presence of
the Vilsmeier–Haack reagent is described by Perumal and Dina-
karan24 in their preparation of chloroenals (such as 19 in Scheme 1)
from aryl methyl ketones.

The microwave accelerated Vilsmeier–Haack reaction is typi-
cally carried out in a microwave reactor at 100 �C for 14 min and
produces a near analytically pure product that requires minimal if
any purification. In fact, we have found that in most cases the re-
action is fully complete within 3–4 min. The regiochemistry of
compounds 22b and 22h was unambiguously established by the
detection of an NOESY signal between the aldehyde hydrogen and
the pyrrole hydrogen (22b) or pyrrole methyl hydrogens (22h). The
equivalent NOESY signal could not be detected for compound 22a
due to the close proximity of the signals and broadness of the
pyrrole hydrogen signal. NOESY, HSQC, and HMBC spectra for these
compounds (22a, 22b, and 22h) allowed for the assignment of all
signals in the proton and carbon NMR spectra (Table 2).

With the ability to achieve high yielding, regioselective, for-
mylations in place, we turned our attention to using this method-
ology to prepare polycitone- and storniamide-type natural
products. We have previously reported4 a relay synthesis of poly-
citones A and B based upon a key intermediate (25) prepared by the
Steglich group9 in their synthesis of the polycitones (Scheme 2).
The precursor to the symmetrical diacylpyrrole (25), as developed
by Steglich and co-workers, is a symmetrical pyrroledicarboxylic
acid (24), which also can be viewed as a relay intermediate for the
preparation of the polycitones. Consequently, using the appropriate
formylated pyrrole (22k), we were able to rapidly carry out a syn-
thesis (Scheme 3) of this tetrasubstituted pyrrole (24) in two steps
and in 62% yield from 22k and thereby accomplish a second relay
synthesis of the polycitones. Interestingly, we also applied micro-
wave acceleration reaction conditions for the preparation of pyrrole
21k (analogous to the conversion of 19 to 20 in Scheme 1) by
reacting the corresponding chloroenal with glycine ethyl ester in
which case a 91% yield of the 2,3,4-trisubstituted pyrrole (21k) was
obtained.

When comparing the spectral data of our material (24) with
those reported by Steglich, the symmetrical nature of the Steglich
intermediate (24) made the comparisons very straightforward and
we were able to observe an identical match by proton and carbon
NMR.

Permethylstorniamide A (10) has been an attractive synthetic
target by a number of international research groups,13,16,25 and
Boger’s efforts11 in this regard also rely on a symmetrical
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tetrasubstituted pyrrole (27) as a key precursor to this natural
product (Scheme 4). This pyrrole (27) is prepared by Boger via his
Diels–Alder/retrograde Diels–Alder strategy coupled with re-
ductive hydrogenolysis chemistry.

Starting from the appropriate formylated pyrrole (22a, Table 1),
oxidation with sodium chlorite with subsequent basic hydrolysis
yields the pyrrole diacid (29) very cleanly and in an overall yield of
85% in two steps (Scheme 5). Methylation of both carboxylic acid
groups with N,N-dimethylformamide dimethylacetal followed by
iodination yields a tetrasubstituted pyrrole (31) in 50% yield in two
steps. The bisalkylation step has not been fully optimized (51%
yield) so there is substantial room for improvement in this regard.
The iodination reaction consistently proceeds in very good yield
(97%). The final reaction to make the Boger intermediate (27) to
permethylstorniamide A11 (10) and thereby complete a relay
Table 1
Microwave accelerated Vilsmeier–Haack formylation of selected pyrroles

N

X Y

CO2Et

Z
N

X Y

CO2Et

Z

H

O

POCl3, DMF and
microwave heating

21 22

Compound 21 X Y Z % Yield for 22

a 3,4,5-Trimethoxyphenyl H H 76
b 4-Bromophenyl H H 70
c 3,4-Dimethoxyphenyl H H 63
d Phenyl H H 91
e 4-Chlorophenyl H H 84
f 4-Methylphenyl H H 67
g 4-Methoxyphenyl H H 81
h 4-Methylphenyl H Me 81
i 4-Methoxyphenyl H Me 81
j 3,4-Dimethoxyphenyl H Me 62
k 4-Methoxyphenyl 4-Methoxyphenyl H 74
synthesis involves a Suzuki cross-coupling reaction of the iodo-
pyrrole (31) with 3,4,5-trimethoxyphenylboronic acid resulting in
a 65% yield of the key synthon (27). As was the case for the Steglich
polycitone precursor (24), the Boger synthon (27) is highly sym-
metrical, which made the spectral comparisons of our material to
the data reported by Boger very straightforward, in which case
there was an identical match for the proton and carbon NMR.
N
OH

O Oz

e2e1p5p2k

Label 22a; X0¼X00¼OMe, Z¼H 22b; X0¼Br, X00¼Z¼H 22h; X0¼Z¼Me, X00¼H

13C NMR 1H NMR 13C NMR 1H NMR 13C NMR 1H NMR

Z 9.8a 10.05 34.8 4.35
p2 130.2 130.1 130.7
p3 136.1 134.6 137.7
p4 115.2 7.03 115.2 7.02 116.8 6.99
p5 127.6 127.8 128.7
k 180.6 9.83 180.3 9.75 182.5 9.79
x1 128.2 131.6 130.1
x2 106.5 6.69 130.5 7.37 129.5 7.31
x3 153.6 132.1 7.60 129.3 7.25
x4 138.5 122.5 137.8
X0 61.0 3.92 21.2 2.42
X00 56.3 3.93
e1 160.2 160.1 160.9
e2 61.5 4.43 61.6 4.42 60.9 4.38
e3 14.3 1.43 14.3 1.42 14.3 1.41

a Due to broadness of the NH resonance and overlap with the sharp aldehyde
signal, higher precision was not warranted.
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3. Conclusions

In summary, Vilsmeier–Haack formylations of pyrrole substrates
can be significantly improved by microwave accelerations. Such
formylated pyrroles are key precursors to the ever growing class of
pyrrole containing marine natural products such as polycitones A
and B as well as permethylstorniamide A. These formylation re-
actions in combination with our vinylogous iminium salt based
approach to highly functionalized pyrroles provide efficient, flexi-
ble, and regiocontrolled methodology for the preparation of this
important class of natural products and related derivatives. These
synthetic strategies and procedures should also provide rapid
access to a wide range of highly functionalized pyrroles for
subsequent biologically driven SAR studies.
4. Experimental

4.1. General

All chemicals were used as-received from the manufacturer
(Aldrich Chemicals and Fisher Scientific) and all reactions were
carried out under a nitrogen or argon atmosphere. All solvents
were dried over 4 Å molecular sieves prior to their use. NMR spectra
were obtained on either a GE Omega 300 MHz spectrometer or
a Bruker 500 MHz spectrometer in either CDCl3, DMSO-d6 or ace-
tone-d6 solutions. IR spectra were recorded on a Nicolet Avatar 320
FT-IR spectrometer with an HATR attachment. High-resolution mass
spectra were provided by the Midwest Center for Mass Spectrom-
etry at the University of Nebraska at Lincoln or on a Biotof Q
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electrospray mass spectrometer at the University of Richmond. Low-
resolution GC–MS spectra were obtained on a Shimadzu QP 5050
instrument. Melting points and boiling points are uncorrected. Flash
chromatographic separations were carried out on a Biotage Horizon
HFC or SP-1 instrument, which had been equipped with a silica
cartridge, and ethyl acetate/hexane was used as the eluant. Micro-
wave accelerated reactions were carried out in a Biotage Liberator
system. Microwave reactions were controlled at a constant tem-
perature whereby the microwave power was allowed to fluctuate so
as to maintain a constant temperature and safe pressure limits. TLC
analyses were conducted on silica plates with hexane/ethyl acetate
as the eluant. Vinamidinium salts utilized for pyrrole formationwere
prepared according to standard procedures.19 All purified reaction
products gave TLC results, GC–MS spectra, flash chromatograms, and
13C NMR spectra consistent with a sample purity of >95%.

4.1.1. Ethyl 4-(3,4,5-trimethoxyphenyl)pyrrole-2-carboxylate (21a)
Into a 250-mL flask equipped with a magnetic stirring bar was

placed 1.00 g (2.27 mmol) of 3,4,5-trimethoxyphenylvinamidinium
hexafluorophosphate along with 0.921 g (6.60 mmol) of ethyl gly-
cinate, 0.740 g (6.58 mmol) of DABCO, and 100 mL of DMF. The
resulting mixture was heated at reflux for 3 h, cooled to room
temperature, and concentrated in vacuo. The residue was taken up
in 100 mL of ethyl acetate and extracted with 3�50 mL of water and
one 50 mL portion of brine, and dried over anhydrous magnesium
sulfate. The resulting solution was filtered, concentrated in vacuo,
which resulted in a tan solid (0.553 g, 80% yield), which exhibited
the following properties: mp 140–141 �C; 1H NMR (CDCl3) d 9.14 (br
s, 1H), 7.28 (s, 2H), 7.20 (dd, J¼5.0 Hz and J¼2.5 Hz, 1H), 7.16 (d of d,
J¼5.0 Hz and J¼2.5 Hz, 1H), 4.38 (q, J¼12 Hz, 2 H), 3.93 (s, 6H) and
3.88 (s, 3H); 13C NMR (CDCl3) d 161.1, 153.6, 136.9, 130.5, 127.0, 123.7,
119.3, 112.4, 102.8, 61.0, 60.6, 56.2 and 14.5; IR (neat) 3270 and
1670 cm�1; HRMS (ES MþH) m/z calcd for C16H20NO5 306.1336,
found 306.1342.

4.1.2. Ethyl 2-formyl-3-(3,4,5-trimethoxyphenyl)pyrrole-5-
carboxylate (22a)

Method A: a 7-mL microwave reaction vessel was equipped with
a stir bar and was charged with 5 mL of DMF and 0.302 g
(1.96 mmol) of phosphorous oxychloride and the resulting mixture
was allowed to stir in an ice bath for 45 min. To this mixture was
then added 0.200 g (0.655 mmol) of ethyl 4-(3,4,5-trimethoxy-
phenyl)pyrrole-5-carboxylate in 1 mL of DMF. The reaction vessel
was sealed (Crymper-seal) and heated by microwaves at 100 �C for
14 min in a Liberator Microwave Reactor. After cooling to room
temperature, the reaction mixture was diluted with 20 mL of water
and extracted with 3�20 mL of ethyl acetate. The combined organic
layers were washed with 3�20 mL of brine and dried over anhy-
drous magnesium sulfate. The resulting solution was filtered,
concentrated in vacuo, which resulted in a tan solid (0.166 g, 76%
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yield). This material was of sufficient purity for use in subsequent
reactions. However, an analytical sample was prepared by flash
chromatography using an ethyl acetate/hexane gradient. The
purified product exhibited the following physical properties: mp
110–111 �C; 1H NMR (CDCl3) d 9.88 (br s, 1H), 9.83 (s, 1H), 7.03 (d,
J¼2.7 Hz, 1H), 6.69 (s, 2H), 4.43 (q, J¼7.1 Hz, 2H), 3.93 (s, 6H), 3.92
(s, 3H) and 1.43 (t, J¼7.1 Hz, 3H); 13C NMR (CDCl3) d 180.6, 160.2,
153.6, 138.5, 136.1, 130.2, 128.2, 127.6, 115.2, 106.5, 61.5, 61.0, 56.3
and 14.3; IR (neat) 3256, 1715 and 1642 cm�1; HRMS (EI) m/z calcd
for C17H19NO6 333.1212, found 333.1215.

Method B: into a 50-mL flask, which had been equipped with
a condenser and magnetic stirring bar, was placed 10 mL of DMF
followed by the addition of 0.901 g (5.89 mmol) of phosphorous
oxychloride. The resulting mixture was stirred in an ice bath for
45 min and ethyl 4-(3,4,5-trimethoxyphenyl)pyrrole-5-carboxylate
(0.500 g, 1.96 mmol) was added. The resulting mixture was heated
at reflux for 2 h. After cooling to room temperature, the reaction
mixture was diluted with 30 mL of water and extracted with
3�30 mL of ethyl acetate. The combined organic layers were
washed with 3�30 mL of brine and dried over anhydrous magne-
sium sulfate. The resulting solution was filtered, concentrated in
vacuo, which resulted in a tan solid (0.225 g, 34% yield). This
material was identical to the product obtained by method A as
determined by 1H NMR and TLC comparison.

4.1.3. Ethyl 2-formyl-3-(4-bromophenyl)pyrrole-5-
carboxylate (22b)

Using a procedure analogous to method A as described in Sec-
tion 4.1.2, a 70% yield of a solid with the following physical prop-
erties was obtained: mp 108–110 �C; 1H NMR (CDCl3) d 10.05 (br s,
1H), 9.75 (s, 1H), 7.60 (d, J¼8.4 Hz, 2H), 7.37 (d, J¼8.4 Hz, 2H), 7.02
(d, J¼2.7 Hz, 1H), 4.42 (q, J¼7.1 Hz, 2H) and 1.42 (t, J¼7.1 Hz, 3H); 13C
NMR (CDCl3) d 180.3, 160.1, 134.6, 132.1, 131.6, 130.5, 130.1, 127.8,
122.5, 115.2, 61.6 and 14.3; in addition, NOESY (1 s mixing time)
cross-peaks were observed between the resonances at 10.05 (pyr-
role NH) and 9.75 ppm (aldehyde hydrogen) establishing the
location of the formyl group as being ortho to the pyrrole nitrogen;
IR (neat) 3282, 1712 and 1663 cm�1; HRMS (EI) m/z calcd for
C14H12NO3Br 321.0001, found 320.9995.

4.1.4. Ethyl 2-formyl-3-(3,4-dimethoxyphenyl)pyrrole-5-
carboxylate (22c)

Using a procedure analogous to method A as described in
Section 4.1.2, a 63% yield of a solid with the following physical
properties was obtained: mp 107–109 �C; 1H NMR (CDCl3) d 9.80
(br s, 2H), 7.05 (dd, J¼2.0 Hz, J¼8.5 Hz, 1H), 7.00–7.02 (m, 2H), 6.97
(d, J¼8.5 Hz, 1H), 4.42 (q, J¼7.0 Hz, 2H), 3.95 (s, 6H) and 1.42 (t,
J¼7.0 Hz, 3H); 13C NMR (CDCl3) d 180.7, 160.2, 149.4, 149.3, 136.0,
130.1, 127.6, 125.4, 121.7, 115.1, 112.2, 111.5, 61.5, 56.1, 56.0 and 14.3;
IR (neat) 3277, 1711 and 1655 cm�1; HRMS (EI) m/z calcd for
C16H17NO5 303.1107, found 303.1113.

4.1.5. Ethyl 2-formyl-3-phenylpyrrole-5-carboxylate (22d)
Using a procedure analogous to method A as described in Sec-

tion 4.1.2, a 91% yield of a solid with the following physical prop-
erties was obtained: mp 110–112 �C; 1H NMR (CDCl3) d 9.87 (br s,
1H), 9.79 (s, 1H), 7.43–7.52 (m, 5H), 7.05 (d, J¼3.0 Hz, 1H), 4.42 (q,
J¼7.0 Hz, 2H) and 1.43 (t, J¼7.0 Hz, 3H); 13C NMR (CDCl3) d 180.8,
160.3, 136.0, 132.7, 130.3, 129.1, 128.9, 128.2, 127.7, 115.3, 61.5 and
14.3; IR (neat) 3269, 1716 and 1663 cm�1; HRMS (EI) m/z calcd for
C14H13NO3 243.0895, found 243.0894.

4.1.6. Ethyl 2-formyl-3-(4-chlorophenylpyrrole)-5-
carboxylate (22e)

Using a procedure analogous to method A as described in Section
4.1.2, a 84% yield of a solid with the following physical properties
was obtained: mp 96–98 �C; 1H NMR (CDCl3) d 9.97 (br s,1H), 9.76 (s,
1H), 7.45 (d, J¼8.5 Hz, 2H), 7.43 (d, J¼8.5 Hz, 2H), 7.02 (d, J¼3.0 Hz,
1H), 4.42 (q, J¼7.5 Hz, 2H) and 1.42 (t, J¼7.5 Hz, 3H); 13C NMR (CDCl3)
d 180.3, 160.1, 134.5, 132.1, 131.6, 130.5, 130.1, 127.8, 122.6, 115.2, 61.6
and 14.3; IR (neat) 3256, 1719 and 1666 cm�1; HRMS (EI) m/z calcd
for C14H12NO3Cl 277.0506, found 277.0504.

4.1.7. Ethyl 2-formyl-3-(4-methylphenylpyrrole)-5-
carboxylate (22f)

Using a procedure analogous to method A as described in
Section 4.1.2, a 67% yield of a solid with the following physical
properties was obtained: mp 104–106 �C; 1H NMR (CDCl3) d 9.78 (br
s, 2H), 7.40 (d, J¼8.1 Hz, 2H), 7.29 (d, J¼8.1 Hz, 2H), 7.02 (d, J¼3.0 Hz,
1H), 4.41 (q, J¼6.9 Hz, 2H) and 1.42 (t, J¼6.9 Hz, 3H); 13C NMR
(CDCl3) d 180.8, 160.3, 138.2, 136.1, 130.2, 129.7, 129.6, 128.9, 127.6,
115.2, 61.4, 21.2 and 14.3; IR (neat) 3258, 1697 and 1658 cm�1;
HRMS (EI) m/z calcd for C15H15NO3 257.1052, found 257.1049.

4.1.8. Ethyl 2-formyl-3-(4-methoxyphenylpyrrole)-5-
carboxylate (22g)

Using a procedure analogous to method A as described in
Section 4.1.2, a 81% yield of a solid with the following physical
properties was obtained: mp 103–105 �C; 1H NMR (CDCl3) d 9.84 (br
s, H), 9.77 (s, 1H), 7.43 (d, J¼9.0 Hz, 2H), 7.00–7.02 (m, 3H), 4.42 (q,
J¼7.0 Hz, 2H), 3.88 (s, 3H) and 1.42 (t, J¼7.0 Hz, 3H); 13C NMR
(CDCl3) d 180.7, 160.3, 159.8, 135.9, 130.2, 130.1, 127.7, 125.1, 115.1,
114.4, 61.4, 55.4 and 14.1; IR (neat) 3273, 1703 and 1662 cm�1;
HRMS (EI) m/z calcd for C15H15NO4 273.1001, found 273.0994.

4.1.9. Ethyl N-methyl-2-formyl-3-(4-methylphenylpyrrole)-5-
carboxylate (22h)

Using a procedure analogous to method A as described in
Section 4.1.2, a 81% yield of a solid with the following physical
properties was obtained: mp 75–76 �C; 1H NMR (CDCl3) d 9.79 (s,
1H), 7.31 (d, J¼8.0 Hz, 2H), 7.25 (d, J¼8.0 Hz, 2H), 6.99 (s, 1H), 4.38
(q, J¼7.1 Hz, 2H), 4.35 (s, 3H), 2.42 (s, 3H) and 1.41 (t, J¼7.1 Hz, 3H);
13C NMR (CDCl3) d 182.5, 160.9, 137.8, 137.7, 130.7, 130.1, 129.5, 129.3,
128.7, 116.8, 60.9, 34.8, 21.2 and 14.3; in addition, NOESY (3 s mixing
time) cross-peaks were observed between the resonances at 4.35
(pyrrole N-CH3) and 9.78 ppm (aldehyde hydrogen) establishing
the location of the formyl group as being ortho to the pyrrole ni-
trogen; IR (neat) 1712 and 1662 cm�1; HRMS (EI) m/z calcd for
C16H17NO3 271.1208, found 271.1209.

4.1.10. Ethyl N-methyl-2-formyl-3-(4-methoxyphenylpyrrole)-5-
carboxylate (22i)

Using a procedure analogous to method A as described in
Section 4.1.2, a 81% yield of a solid with the following physical
properties was obtained: mp 73–75 �C; 1H NMR (CDCl3) d 9.77 (s,
1H), 7.34 (d, J¼9.0 Hz, 2H), 6.97–6.99 (m, 3H), 4.36 (q, J¼7.0 Hz, 2H),
4.34 (s, 3H), 3.87 (s, 3H) and 1.40 (t, J¼7.0 Hz, 3H); 13C NMR (CDCl3)
d 182.4, 160.9, 159.6, 137.5, 130.7, 130.6, 128.7, 125.5, 116.7, 114.4,
60.9, 55.4, 34.8 and 14.3; IR (neat) 1706 and 1650 cm�1; HRMS (ES
MþH) m/z calcd for C16H18NO4 288.1230, found 288.1235.

4.1.11. Ethyl N-methyl-2-formyl-3-(3,4-dimethoxyphenylpyrrole)-
5-carboxylate (22j)

Using a procedure analogous to method A as described in Sec-
tion 4.1.2, a 62% yield of a solid with the following physical prop-
erties was obtained: mp 107–109 �C; 1H NMR (CDCl3) d 9.80 (s, 1H),
6.98 (s, 1H), 6.93–6.95 (m, 3H), 4.37 (q, J¼7.5 Hz, 2H), 4.35 (s, 3H),
3.95 (s, 3H), 3.93 (s, 3H) and 1.41 (q, J¼7.5 Hz, 3H); 13C NMR (CDCl3)
d 182.5, 160.9, 149.1, 149.0, 137.6, 130.8, 128.7, 125.8, 122.3, 116.7,
112.7, 111.2, 61.0, 56.1, 56.0, 34.8 and 14.3; IR (neat) 1711 and
1655 cm�1; HRMS (ES MþH) m/z calcd for C17H20NO5 318.1336,
found 318.1346.
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4.1.12. Ethyl 3,4-bis(4-methoxyphenyl)pyrrole-2-carboxylate (21k)
A 7-mL microwave reaction vessel was equipped with a stir bar

and was charged with 6 mL of DMF and 0.200 g (0.660 mmol) of
a mixture of E- and Z-3-chloro-2,3-bis(4-methoxyphenyl)-prope-
nal, 0.277 g (1.98 mmol) of glycine ethyl ester, and 0.222 g
(1.98 mmol) of DABCO, and the resulting mixture was allowed to stir
for 30 min. The reaction vessel was sealed (Crymper-seal) and
heated by microwaves at 150 �C for 14 min in a Liberator Microwave
Reactor. After cooling to room temperature, the reaction mixture
was diluted with 20 mL of water and extracted with 3�20 mL of
ethyl acetate. The combined organic layers were washed with
3�20 mL of brine and dried over anhydrous magnesium sulfate. The
resulting solution was filtered and concentrated in vacuo, which
resulted in a solid (0.210 g, 91% yield) that was identical by TLC and
proton NMR to a sample previously reported by our research group.
This material was of sufficient purity to be used in subsequent
transformations without additional purification.

4.1.13. Ethyl 5-formyl-3,4-bis(4-methoxyphenyl)pyrrole-2-
carboxylate (22k)

Using a procedure analogous to method A as described in
Section 4.1.2, a 74% yield of a solid with the following physical
properties was obtained: mp 122–124 �C; 1H NMR (CDCl3) d 9.88
(br s, 1H), 9.62 (s, 1H), 7.08–7.14 (m, 4 H), 6.84 (d, J¼6.0 Hz, 2H), 6.82
(d, J¼6.0 Hz, 2H), 4.28 (q, J¼6.9 Hz, 2H), 3.82 (s, 6H) and 1.26 (t,
J¼6.9 Hz, 3H); 13C NMR (CDCl3) d 181.4, 160.3, 159.3, 158.8, 134.8,
131.9, 131.8, 130.3, 129.8, 124.6, 123.8, 123.6, 113.8, 113.1, 61.1, 55.2,
55.1 and 14.1; IR (neat) 1675 and 1630 cm�1; HRMS (EI) m/z calcd
for C22H21NO5 379.1420, found 379.1421.

4.1.14. 5-Carbethoxy-3,4-bis(4-methoxyphenyl)pyrrole-2-
carboxylic acid (26)

Ethyl 5-formyl-3,4-bis(4-methoxyphenyl)pyrrole-2-carboxylate
(0.200 g, 0.530 mmol) and 50 mL of DMSO were place in a flask
equipped with a stirring bar and cooled in an ice-water bath. A
solution of sodium dihydrogen phosphate (0.023 g, 0.160 mmol in
10 mL of water) was added to the flask and the reaction mixture
was stirred for 15 min. Subsequently, a solution of sodium chlorite
(0.146 g, 1.59 mmol in 10 mL of water) was added to the flask
dropwise with cooling and the resulting reaction mixture was
stirred for 24 h at room temperature. The reaction mixture was
then cooled in an ice-water bath and concentrated hydrochloric
acid was added dropwise until the mixture reached a pH of ap-
proximately 2. The resulting mixture was vacuum filtered and the
resulting solid was dried under vacuum thereby producing 0.190 g
(88% yield) of material, which exhibited the following physical
properties: mp 120–272 �C; 1H NMR (CDCl3) d 12.62 (s, 1H), 11.95 (s,
1H), 7.00–7.03 (m, 4H), 6.79 (d, J¼8.5 Hz, 4H), 4.10 (q, J¼7.0 Hz, 2H),
3.71 (s, 6H) and 1.13 (t, J¼7.0 Hz, 3H); 13C NMR (CDCl3) d 162.0,
160.4, 158.3, 158.3, 132.3, 132.2, 130.6, 130.1, 126.4, 126.3, 123.0,
121.9, 113.1, 113.0, 60.4, 55.4, 55.3 and 14.4; IR (neat) 3265, 1695 and
1663 cm�1; HRMS (EI) m/z calcd for C22H21NO6 395.1369, found
395.1367.

4.1.15. 3,4-Bis(4-methoxyphenyl)pyrrole-2,5-dicarboxylic acid (24)
Into a flask equipped with a stirring bar and reflux condenser

were placed 0.064 g (1.10 mmol) of potassium hydroxide and 30 mL
of a 50:50 mixture of ethanol/water. The mixture was stirred until
all solid materials dissolved and ethyl 5-formyl-3,4-bis(4-methox-
yphenyl)pyrrole-2-carboxylate (0.150 g, 0.380 mmol) was added to
the flask, and the resulting reaction mixture was refluxed for 20 h.
The reaction mixture was then cooled in an ice-water bath and the
mixture was adjusted to a pH of 2 by the slow addition of 6 M
hydrochloric acid, which resulted in the formation of a white solid.
The solid was filtered and dried under vacuum yielding 0.097 g
(70% yield) of a solid product, which exhibited identical spectral
properties to those reported by Steglich and co-workers: mp 200–
202 �C (lit.9 268–270 �C); 1H NMR (DMSO-d6) d 12.58 (br s, 2H),
11.58 (br s, 1H), 6.96 (d, J¼8.5 Hz, 4H), 6.73 (d, J¼8.5 Hz, 4H) and
3.70 (s, 6H); 13C NMR (DMSO-d6) d 161.9, 158.2, 132.2, 130.2, 126.5,
122.6, 113.1 and 55.3; IR (neat) 3240 and 1683 cm�1; HRMS (EI) m/z
calcd for C20H17NO6 367.1056, found 367.1052.

4.1.16. 5-Carbethoxy-3-(3,4,5-trimethoxyphenyl)pyrrole-2-
carboxylic acid (28)

Ethyl 2-formyl-3-(3,4,5-trimethoxyphenyl)pyrrole-5-carboxyl-
ate (0.400 g, 1.20 mmol) was placed in flask equipped with a mag-
netic stirring bar and to this was added 40 mL of DMSO followed by
a solution containing 0.172 g (1.20 mmol) of sodium dihydrogen
phosphate in 10 mL of water. The mixture was cooled in an ice-
water bath and a solution of sodium chlorite (0.332 g, 3.61 mmol)
in 10 mL of water was added in a dropwise fashion to the reaction
mixture. After stirring for 24 h at room temperature, the reaction
mixture was adjusted to a pH of 2 with 6 M hydrochloric acid while
being cooled in an ice-water bath. The resulting mixture was
extracted with 3�30 mL of ethyl acetate and the combined organic
phases were washed with 30 mL of brine, dried over anhydrous
magnesium sulfate, and concentrated in vacuo to give 0.381 g (91%
yield) of a solid, which exhibited the following physical properties:
mp 118–120 �C; 1H NMR (CDCl3) d 10.04 (br s, 1H), 6.98 (d, J¼2.5 Hz,
1H), 6.84 (s, 2H), 4.01 (q, J¼7.0 Hz, 2H), 3.91 (s, 3H), 3.89 (s, 6H) and
1.41 (t, J¼7.0 Hz, 3H); 13C NMR (CDCl3) d 163.8, 160.3, 152.7, 137.7,
133.4, 129.1, 125.6, 120.7, 116.7, 106.9, 61.3, 60.9, 56.2 and 14.3; IR
(neat) 3283, 1706 and 1660 cm�1; HRMS (EI) m/z calcd for
C17H19NO7 349.1161, found 349.1160.

4.1.17. 3-(3,4,5-Trimethoxyphenyl)pyrrole-2,5-dicarboxylic
acid (29)

Into a flask equipped with a stirring bar and reflux condenser
were placed 0.337 g (6.01 mmol) of potassium hydroxide and
60 mL of a 50:50 mixture of ethanol/water. The mixture was stirred
until all solid material dissolved and 5-carbethoxy-3-(3,4,5-trimeth-
oxyphenyl)pyrrole-2-carboxylic acid (0.700 g, 2.04 mmol) was
added to the flask and the resulting reaction mixture was refluxed
for 24 h. The reaction mixture was then cooled in an ice-water bath,
adjusted to a pH of 2 by the slow addition of 6 M hydrochloric acid,
and extracted with 3�30 mL of ethyl acetate. The combined organic
phases were washed with 1�30 mL of brine and dried over anhy-
drous magnesium sulfate. After removal of the drying agent, the
solution was concentrated in vacuo to give 0.600 g (93% yield) of
a solid, which exhibited the following physical properties: mp 178–
179 �C (dec); 1H NMR (DMSO-d6) d 12.82 (br s, 2H), 11.90 (br s, 1H),
6.91 (d, J¼2.5 Hz, 1H), 6.85 (s, 2H), 3.77 (s, 6H) and 3.69 (s, 6H); 13C
NMR (DMSO-d6) d 162.0, 161.6, 152.6, 137.1, 131.0, 130.3, 126.0, 122.8,
116.7, 107.3, 60.5 and 56.3; IR (neat) 2925, 1690 and 1660 cm�1;
HRMS (EI) m/z calcd for C15H15NO7 321.0848, found 321.0851.

4.1.18. Dimethyl 3-(3,4,5-trimethoxyphenyl)pyrrole-2,5-
dicarboxylate (30)

A flask was equipped with a magnetic stir bar and to it were
added 3-(3,4,5-trimethoxyphenyl)pyrrole-2,5-dicarboxylic acid
(0.600 g, 1.87 mmol), 60 mL of dry chloroform, and 1.345 g
(11.3 mmol) of N,N-dimethylformamide dimethylacetal. The
resulting mixture was stirred at room temperature for 36 h and
diluted with 30 mL of water. After separating the two phases, the
aqueous phase was extracted with 3�30 mL of ethyl acetate and
the combined organic phases were washed with 30 mL of brine and
dried over anhydrous magnesium sulfate. After removal of the
drying agent, the solution was concentrated in vacuo to give 0.330 g
(51% yield) of a solid, which exhibited the following physical
properties: mp 118–118 �C; 1H NMR (CDCl3) d 9.80 (s, 1H), 6.98 (d,
J¼3.5 Hz, 1H), 6.83 (s, 2H), 3.96 (s, 3H), 3.91 (s, 3H), 3.91 (s, 6H) and
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3.87 (s, 3H); 13C NMR (CDCl3) d 160.6, 160.5, 152.7, 137.7, 132.4,
129.2, 124.7, 121.1, 116.6, 106.8, 60.9, 56.2, 52.1 and 51.9; IR (neat)
3278, 1721 and 1706 cm�1; HRMS (EI) m/z calcd for C17H19NO7

349.1161, found 349.1163.

4.1.19. Dimethyl 3-iodo-4-(3,4,5-trimethoxyphenyl)pyrrole-2,5-
dicarboxylate (31)

A flask was equipped with a magnetic stir bar and to it were
added dimethyl 3-(3,4,5-trimethoxyphenyl)pyrrole-2,5-dicarboxy-
late (0.150 g, 0.429 mmol), 15 mL of DMF, and 0.072 g (1.29 mmol)
of potassium hydroxide. The resulting mixture was stirred for 1 h,
iodine (0.142 g, 0.558 mmol) was added to the flask and the
resulting reaction mixture was stirred at room temperature for 20 h
while being protected from any light. The reaction mixture was
then cooled in an ice-water bath and quenched with 20 mL of a 10%
by weight aqueous solution of sodium thiosulfate. The reaction
mixture was diluted with additional water and extracted with
3�30 mL of ethyl acetate, and the combined organic phases were
washed with 30 mL of brine and dried over anhydrous magnesium
sulfate. After removal of the drying agent, the solution was con-
centrated in vacuo to give 0.198 g (97% yield) of a solid, which
exhibited the following physical properties: mp 213–216 �C; 1H
NMR (CDCl3) d 10.02 (s, 1H), 6.55 (s, 2H), 3.99 (s, 3H), 3.94 (s, 3H),
3.89 (s, 6H) and 3.79 (s, 3H); 13C NMR (CDCl3) d 159.8, 159.7, 152.5,
137.8, 136.1, 129.1, 125.3, 122.3, 110.5, 108.1, 60.9, 56.2, 52.2 and 52.1:
IR (neat) 3257, 1726 and 1706 cm�1; HRMS (ES MþH) m/z calcd for
C17H19NO7I 476.0201, found 476.0191.

4.1.20. Dimethyl bis-3,4-(3,4,5-trimethoxyphenyl)pyrrole-2,5-
dicarboxylate (27)

A 7-mL microwave reaction vessel was equipped with a stir bar
and was charged with 5 mL of a 3:1 toluene/ethanol mixture, which
was followed by the addition of 0.200 g (0.421 mmol) of dimethyl
3-iodo-4-(3,4,5-trimethoxyphenyl)pyrrole-2,5-dicarboxylate, 0.138 g
(0.652 mmol) of 3,4,5-trimethoxyphenylboronic acid, 0.012 g
(0.0105 mmol) of palladium tetrakistriphenylphosphine, and 3
drops of water. The reaction vessel was sealed (Crymper-seal) and
heated by microwaves at 110 �C for 30 min in a Liberator Micro-
wave Reactor. After cooling to room temperature, the mixture was
filtered through a silica gel plug, which was washed with additional
ethyl acetate (30 mL). The combined organic filtrates were washed
with 20 mL of 10% aqueous sodium hydroxide solution, 30 mL of
brine and dried over anhydrous magnesium sulfate. After removal
of the drying agent, the solution was concentrated in vacuo to give
0.140 g (65% yield) of a solid. An analytical sample was prepared by
flash chromatography using an ethyl acetate/hexane gradient. The
purified product exhibited identical spectral properties to those
reported by Boger and co-workers: mp 159–160 �C (lit.11a 153–
155 �C); 1H NMR (CDCl3) d 9.86 (br s, 1H), 6.40 (s, 4H), 3.85 (s, 12 H)
and 3.67 (s, 12H); 13C NMR (CDCl3) d 160.6, 152.4, 137.4, 131.2, 128.1,
121.0, 108.5, 60.9, 56.1 and 51.9: IR (neat) 3242 and 1696 cm�1;
HRMS (ES MþH) m/z calcd for C26H30NO10 516.1864, found
516.1869.
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